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Abstract. In this paper we use the term ‘physical tensor’ to stand for a tensor that belongs to a tensor subspace.
Based on the relationship among the characters of rotation representation, some techniques are developed in order
to give the numbers of independent deviatoric tensors contained in the irreducible decompositions of physical
tensors, even prior to the constructions of the irreducible decompositions. A number of examples are shown and
many of them are new results.
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1. Introduction

Denote byé the basic (or physical) Euclidean space. Most tensors involved in the physical
and engineering sciences belong to certain linear subspaces of the full tensor spéces in
For instance, stress, strain and thermal expansion tensors are elements of the second-order
symmetric tensor spack A photo-elastic tensdvl is a linear transformation o#), or equiv-

alently, can be read as a second-order tensér or equivalently, an element &f® $, where

® denotes tensor product. An elastic tenBand a second rank elastic ten&grare second-

order symmetric and third-order symmetric tensorg.irA piezoelectric (or piezomagnetic)
tensorP is a linear transformation fror§ to &, or equivalently, an element 6f® 4. In their
component forms these tensors read:

Piji = Py, Eijii = Ejin = Ewij,

— e — .. 2 _ 2
Miju = Mji = Miju, Efimn = Eiimn

— E?

_ 2
=E mnklij

klijmn
Modelling a quadratic, cubic, or quartic yielding function in the theory of plasticity requires a
second-, third-, or fourth-order symmetric tensosirrather than a generic fourth-, sixth-, or
eighth-order tensor if.

Therefore, we use the terphysical tensordo represent tensors that belong to linear
subspaces of the full tensor space€inThe aim is to develop some specific technigues for
physical tensors in analyzing or constructing their irreducible decompositions, that may not
be available for generic tensors.

It is well known from the theory of group representations that, in principle, a tensor of
any finite order can be decomposed into a sum of irreducible tensors. Irreducible decomposi-
tions of tensors allow to separate the tensors in consideration into their isotropic and various
anisotropic parts, and distinguish the rotationally invariant quantity from every anisotropic

* To whom correspondence should be addressed.
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part. Thus, this enables easier and more intuitive physical understandings and characteristics
of the tensors. Proper examples of such advantages can be seen in many @apgks (

2]). Irreducible decompositions may even become a necessity in formulating a physical or
constitutive equation which involves high-order tensors.

Some operable methods on irreducible decompositions of tensors were proposed by Spen-
cer [3], Hannabuss [4], Rychlewski [5] and Zeual.[6] among few others. All these works
deal with generic tensors, rather than physical tensors. Although the irreducible decompos-
itions of physical tensors can be reduced from those of generic ones, such reductions need
to be guided by prior knowledge on the numbers of independent deviatoric tensors that can
be contained in the irreducible decompositions of the considered physical tensors. To know
the number of independent deviatoric tensors in the irreducible decomposition of a concerned
physical tensor prior to the detailed construction of the irreducible decomposition is itself of
importance, which to a certain degree reveals the structure of this physical tensor.

To find such numbers for physical tensors of various types, prior to the construction of the
irreducible decompositions, is one of the main aims of the present paper. This is done at first
by linking such numbers with the characters of rotation representations as restrictions on the
physical tensors and on deviatoric tensors, and then some techniques are developed for the
evaluation of the characters of rotation representations for physical tensors of various types.
We also develop some methods to derive the irreducible decompositions of physical tensors
directly. A number of examples, many of which are new results, are given.

In the group representation theory it known that deviatoric tensors can be one-to-one con-
nected with spherical harmonics. To make this paper self-contained, we give the relationships
among deviatoric tensors, spherical harmonics and Fourier expansions in Appendix A.

Finally, we emphasize that the suggested method and obtained results in this paper are
useful not only in the context of elasticity theory (Blackus [7], Cowin [8]), damage mech-
anics €f. Onat [9], Krajcinovic and Mastilovic [10], He and Curnier [1], Zheng and Hwang
[2]), plasticity and formulation of higher-order interactions among multiply physical fiefds (
Juresckhe [11]), but to any fields where tensors of high orders are involved.

2. Preliminaries

This paper is written in full consistence with the paper of Zbwal. [6], which deals with
the irreducible decomposition of generic tensors. The genétiorder tensor and the generic
nth order deviatoric tensor in the basic Euclidean spgeee denoted by ™ or 7;, ;, and
D™ or D;, ;,, respectively. The corresponding linear spaces are signifi@fasnd D™,
where ®’ signifies tensor product. The terdeviatoric tensofs synonymous witltompletely
symmetric and traceless tenserg.

D =D, = D;

=...=D Dssig...in =0.

i1i203...in 2i1i3...0n 3i0i1...0n inioiz...i1»
By definition, scalars and vectors are zeroth- and first-order deviatoric tensors, respectively,
and the generic scalar is denoted by either D and the generic vector, by eitheor DX,

It is well known that dimD™ is always equal to 2 for any positive integewhen dimé = 2,

and dimD ™ equals 2+1 for any nonnegative integewhen dimé = 3. Tensor components

are referred to an arbitrarily given orthonormal frafeg with minuscule Latin indices. The
summation convention applies to repeated minuscule Latin indices only, not to majuscule ones

which are also used in this paper in several cases. The inner prodgids tenoted by a dot
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“’. To €®" and all its subspaces (includisg™), we appointT;, ;, S;
ofanyT, S € €®" and use the abstract notati®ro Sfor 7;, ;, S, .-

A second-order tensdR is said to beorthogonal if R;xRjx = Ry Ry; = &;j, whereg;; is
the Kronecker delta. Further, if the determinant offis equal to 1, it is said to beratation.
An nth-order tensol™ is said to benemitropicor isotropic, if the following invariance

as the inner product

1..dn

R

ivjr -+ RinjuLjnjn = Lig.iy

holds for any rotation or any orthogonal tenggrespectively. The tens®;, ;, ... R, Tj,...j.
is abstractly denoted B> [T ], which induces the linear transformatigt” on €®", called
thenth Kronecker powenf R (cf. [12, 13]).

It is well known that the second-order identity tengds the basic isotropic tensor, add
and the permutation tenser are the basic hemitropic tensors. Because of the identities

EijErs = 8ir8js - (Sis(sljr, or

EijkErst = 8ir8.j58kt + (Sis(sljt(skr + 8[18.jr6ks - 8is6jr8kt - (Sitfsjs(skr - 8[}’8./'[6/{_97

in two or three-dimensional spa€erespectively, any isotropic tensor is expressible as a linear
combination of tensors in the form gérR - - - ® 1), and any hemitropic tensor is expressible
as a linear combination of tensors in the forms

perfl®---® 1), pee ®1®---Q 1), 1)

where ‘per’ indicates a permutation operation. For instadgé;, andé;, §;, are two per-
mutations of;;,.
A D®-induced mh-orderirreducible tensorcan be defined as a linear hemitropic function

of D@, and is denoted bl [D®] or I;, ;. j,. ;. Dj. ;- By definition, the relation

[=D R [DW]] = R [I™9[D®]], or
I;

(2)

voin i Rijky -+« Rjoks Diyoky = Rigty « - Riyt, iyt jo.js Doy

holds for any rotatiorR and anysth-order deviatoric tensdd®. This requires that;
or, in brief, 1% must be £ + s)th-order hemitropic tensor.

In the work of Zouet al,, the recursive formulae for constructing the orthogonal irreducible
decompositions of the generith order tensoif ™ for any finite positive integen in both
two and three dimensions are established. The decompositions take the form

1~~~injl~~~j:

7 g T3 I
0 K 22 :
TO =3 a5+ 3 10w+ > 15 2DP+ -+ ) 1D, &)
J=1 J=1 J=1 J=1
or in brief,

TW = a4 Jiv+ J3D@ f ... F J'D™, (4)
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with

0, if n+s=o0dd

n .
nts |- if n4+s=even
2

J”—_n " 6
S__S - s+ 1, ’ ()

in two or three dimensions, respectively, Wheéféa [*] and J! in two dimensions are the
coefficients of¢*® in the expansions afl + x)", (1 + x + 1/x)" and(x + 1/x)", respectively.
The majuscule Latinindex (J = 1, ..., J!) signifies that the decomposition (3) involvés
independentth-order deviatoric tensors. In other wordg,calculated from (5) or (6) denotes
the number of independesth-order deviatoric tensors involved in the decompositions (3) or
(4).

A given irreducible decomposition (3) means that the set of hemitropic teh%d?sis
given or independent af ™. One can easily verify that

J' = (5)

n n
142 gr=2" or > 1+2)J' =3 7
s=1 s=0

in two or three dimensions, respectively. This implies the following basic proposition.

PROPOSITION 1. All the linear transformationd $"*: 9© — & in the irreducible
decomposition3) must be isomorphic, that igjm 1" [D®] = dim D).

3. Numbers of deviatoric tensors and characters of rotation representations

3.1. KRONECKER PRODUCTS AND CHARACTERS OF LINEAR TRANSFORMATIONS

Let vV, and'V, be two Euclidean spaces ahd andL , be any two linear transformations on
V1 and'V,, respectively. We always assemble the inner product

(Vi®V2) o (U1 ® Up) = (VioUg)(VaoUp), (foranyv, u, € Vi)
to the tensor product spadg ® V,, so thatV; ® V, becomes a hew Euclidean space of the
dimensions diny, dim V,. The Kronecker productf. [13, pp. 68—70]), denoted Hy; x Lo,
of L, andL», is defined as a linear transformation ¥n® vV, such that

L1 x Lo[vi ® V2] = Li[vi] ® Lo[v2],  (for anyv, € Vy). (8)
Thus, ifo, for k = 1,2 are (real or complex) eigenvalues lof with respect tov, the
associated eigentensor®. L 1[V1] = o1v; andL,[V,] = o5 vy, thenoio, is an eigenvalue of

L, x L, with v; ® v, as an associated eigentensor, and the set of eigenvalugs-of » is

{0107 for all eigenvalues; of L1 ando; of L 5}. (9)
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The apparent associativity of the Kronecker product allows us to define Kronecker powers
recursively, such as theth Kronecker poweR*" = R x R*"~ of the rotationR which was
described previously.

In the theory of group representations, the concephafactery (L) of a linear transform-
ationL plays a key roley (L) is defined as the sum of all eigenvalued.ofrom (9) it is seen
that

x(L1x L) = x(L)x(Ly). (10)

Particularly, for any rotatiofR and any positive integer, x (R*") = x (R)".
It is well known that in two dimensions, the eigenvaluesRofire two unit conjugated
complex numbers®’, say, so that we have

x(R) =€’ + e =2 cos, ¥ (R*™) = (2 cosh)"; (12)

and in three dimensions, the set of eigenvalueR ofin be expressed & e*'?}, so that we
have

x(R)=1+¢€’+e' =1+ 2 cosb, x (R*") = (1+ 2 cosh)", (12)
where i= +/—1 is the unit imaginary number. Geometricallyis therotation angleof R.

3.2. NUMBERS OF INDEPENDENT DEVIATORIC TENSORS IN LINKING CHARACTERS OF
ROTATION REPRESENTATIONS

It is easy to check that for any rotatidhand any positive integer, R**[D™] is still devi-
atoric. In other words, the linear spa@™ is an invariant linear subspace Rf", i.e. R*"
[D™] € D™. Therefore, we can define the restriction, denotedrtsy| o or the simpler
R*"| g, of R** on D™ through the relatiolR*” [D™] = R*"|, [D™]. Noting the identity
(2) for anyD®-inducednth-order irreducible tensor, we see that &’-induced linear space

| =9 [ D] is also an invariant linear subspaceRsf*. Furthermore, from (2) one can see that,
if o is an eigenvalue dR**|p, then it is also an eigenvalue of the restrictiorRof* on | )
[DW].

Now, we are ready to establish the important relationship between the characters of ro-
tation representations and the numbers of independent deviatoric tensors in the irreducible
decompositions of physical tensors. Consider the linear spéiteof all nth-order tensors in
a certain physical tensor type (ethe elastic tensor type, piezoelectric tensor type). A general
element inmM™ will be denoted byM ™. Restricting the irreducible decomposition (3) on
M™ we are led to the irreducible decompositionf?, which is expressed coincidently in
the normal and brief forms:

n
Jn

Jo ];’Ll 13
DI ARD B IR i L R DI il B
J=1 J=1 J=1

J=1

= jla+ jiv+4 jiD@ 4 ... f jrD™.

Recalling Proposition 1, we observe that all the spdde8[D\"] for J = 1,..., " are
of the same dimensions as dif*. Consequently, the restriction &< on 19" [D®)] is
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equivalent toR**| 5. These analyses thus yield that the eigenvalue set and the character of
R*" as restriction or (J"’S)[:D(S)] are completely the same as thoseR3f|,. We obtain the
following basic counting number property.

PROPOSITION 2. The numbersj§, ji, ..., j of independent deviatoric tensors in the
orthogonal irreducible decompositiail3) and the characters are related in the form

XR ) = j§ + jix (R ) + - + jx (R*|p). (14)

It is well known in the theory of group representations, or can be seen in the next subsection
for the sake of making this paper self-contained, that the set of eigenvalues and character of
R*%|p are respectively

{9, x(R*|p) = 2 cossh (15)
in two dimensions, and
(1, et eti20 et Y (R*|p) = 14 2(COSH + - - - + cOSs6) (16)

in three dimensions. We are ready to prove the follondognting number theorem

THEOREM 3. When the charactex (R*"| ) is written in the form

X (R ym) = xg +2(x{ C0SO + x5 COS B + --- + x, COSnb)

= X0+ Y _xlE +e), 17)

s=1

the numbers’, s =0, 1, ..., n, of independent deviatoric tensors in the irreducible decom-
position(13) of the generic physical tenstt ™ e M ™ can be calculated as follows

" x', in 2D space
]s = " n . i » (18)
X$ — X1, In 3D space, withy,, ; = 0.

Proof. In two dimensions, substituting (16 (14) and comparing it with (17), we find
that (18) follows directly. In three dimensions, substitution of (163sults in

xR yw) = (o + -+ ) +201 +-- + j,)cose
+---+2(j,_4 + j,) cosn — 1)6 + 2j,' cosno.
Comparing the above coefficients with those in (wie simply arrive at the relation (18)0

Thus, it is possible to obtain the numbegisprior to the constructions of irreducible de-
compositions, and the key to obtajfi is to evaluate the charactexgR*"| ;) for physical
tensors. Now, one can skip over the next subsection, which is written mostly for the purpose of
making this paper self-contained, and go to the next section which deals with some interesting
types of physical tensors.
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3.3. (HARACTERS OFR*"|5: A SUPPLEMENT

In two dimensions, the definition of a rotatiGhcan be given geometrically by
R .e = cosfe; +sinfe, R.e, = —sin e, 4 cosfe,,

or in their brief form:R - w = e “w with w = €, + i &, where{e} is a given orthonormal
basis ofé. Consequently, for any positive integerwe haveR*" [0®"] = e " @®", or

R*"[P™] = cosndP™ + sin ndQ™, R*"[Q™] = — sinndP™ + cosnodQ"™, (19)

wheree®" (0®" = w® »®" V) is thenth tensor power o, andP™ andQ®™ as the real
and imaginary parts a$®" constitute an orthogonal basis®f™. The formulae (19) are very
useful for characterizing various anisotropies ([14, 15]). A component form‘fcan be
written as follows

D™ = Re{c" ™"}, (20)

wherec™ is a complex number, antke indicates the real part. From (19) and (20) it is
seen that the eigenvalue set of the restriclfi| 5 of R*" on the 2D subspaceD” for each
positive integem consists of the paire€”’ and the character ig(R*"|5) = 2 cosné, as
shown in (15).

In three dimensions, for any given rotati®) we assign an orthonormal bases, e, e3}
of & such thates is the unit axial vector oR, i.e. R - e3 = e3. Thus, a geometrical definition
of R can be given as

R.-e3=e63, R . e = cosbe; + sin ey, R.e, = —sinfe; 4 cosfe,,
or equivalentlyR - 3 = 3 andR - w = e Y. Further, introducing the complex vector
Wy =263+ € %0 — o (21)
and notingw, - @, = 0, we see that theth tensor powem;‘f” is deviatoric. Consequently, the
coefficient tensor®; andW (" in the expansion ab;"
w3 =Py + Xn:{e*iww.g") + (=D €W ™)
s=1

are all deviatoric. It is evident th&tg“ is real whiIeW§"> for 1 < s < n are complex. The
relations

Rxn[wg)n] _ w?ﬁd; _ sz) + Z{efis(9+¢)wgn) + (=1 és(9+¢)v_\/§n)}
s=1

further yields

RUPI =Py, RWY=e™W",  1<s<n. (22)
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Therefore, the subspacgj spanned b)Pg“ and the subspac®! spanned by the real and
imaginary part${" andQ”, of W are all the invariant subspacesrf" with one-fold the
eigenvalue 1 and one-fold the pair of eigenvalues’erespectively. Further, by observing

W™ o RW™M] = e W™ o W™ = (RT)*"[W™] o W = e W™ o W™,
W o RMWM ] = €W™ o Wi = (RT)"[W™] o W, = e W o W,

whereR” denotes the transpose &f we find that the2n + 1) deviatoric tensor®}”, P{",

Q™. ...,P™, Q™ are mutually orthogonal. Consequently, due to dth= 21 + 1 in three
dimensions, thes@n + 1) tensors constitute an orthogonal basisodf. In other words, any
D™ e D" can be expressed in the following component form

D™ — Ol(O)P(()n) + NRe Z{Cin)wyl)}’ (23)
s=1

wherea™ is real andc™ are complex numbers. Furthermore, from (22) and (20) it is seen
that the set of eigenvalues and the character of the restritié, are just those were given
in (16).

4. Irreducible decompositions of physical tensors

4.1. PHYSICAL TENSORS IN TYPES ORM"” ® MJ'? AND 82"
The following proposition and its corollary are quite practical.

PROPOSITION 4.Letn; andn; be any two positive integers, = n; + n,, and M\ and
Mé"” be two physical tensor spaces of ordegsandn,, respectively. For the physical tensor
spaceM ™ = M"Y @ MY, then

R Lym) = X R ) X (R ). (24)

COROLLARY 5. Let $ be the second-order symmetric tensor space in the normal Euclidean
spaceg, n be any positive integer, ané®" be thenth order tensor space ig. Then,

X (R*®|4a0) = x (R*?|5)". (25)

Proof. According to the definition (8), we hav@*"| ym = R*"1| ;i x R*"2| \ np. AP-
plying (10) yields (24). The property (25) is a simple consequence of (24) because of the
commutativity of Kronecker product. O

As an application of (24), we have

x (R0 om) = (2 cosh) (2 cosnd) = 2[cosn — 1)6 + cosn + 1)6]
in two dimensions, and

X (R0 om) = (142 cosh)(L+ 2 cosh + - -- + 2 cosnb)

= 3+ 6[cosh + ---+co9n — 1)0] + 4cosnb + 2 cogn + 1)6
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in three dimensions. Recalling Theorem 3, we obtain the following result.

PROPOSOTION 6.For any integern > 1, the irreducible decompositions of the generic
elemenG"*Y of & ® D™ take the following forms

D@D L pt+D  in two dimensions
Gr+D — (26)
DD L p®™ 1 D@D jn three dimensions

The result (26) was used in the work of Zoet al.[6] in constructing their recursive formulae
of the orthogonal irreducible decompositions for three-dimensional generic tensors of any
finite orders.

Denote the generic element %" by S™. For instance, the photo-elastic tensbis S .
It is well known that, in both two and three dimensions, the generic second order symmetric
tensorS can be expressed in the unified form

S=qal+D®?, 27)

Recalling the forms (15) and (16) for the sets of eigenvalues and charactBr€’|gf, we
obtain the sets and charactersy@R*?|5), respectively, as shown below

(1,52}, y(R*?|5) =1+ 2 cos @ (28)
in two dimensions, and
(1,1, e &2}y (R*?|4) = 2(1 4 cosf + cos D) (29)

in three dimensions.

Denote the coefficients of*@ in the expansions ofl + €’ + e )" and of (2 + €’ +
e + % 1 e 2%y py ["] and {?"}, respectively. From (28), (29) and Theorem 3 we obtain
the following result.

PROPOSITION 7.The irreducible decomposition of ti#ath-order tensorS™ in & as the
genericnth-order tensor in§ takes the form

S = jia+ j2'v+ j2'DP 4 - 4 jrD@,
with, in two dimensions

0, if s =odd

2n
:2n :2n -2n 71
Js = . jor+2) j'=3, (30)
[?/2] if s=even ° ;

and in three dimensions

n 0 2n
j = { } — { s 1 } , Z(:)(l-i- 25)j2 = 6". (31)

N

Table 1 lists the nonzero numbei& up ton = 4. For example, from this table we read that
the irreducible decomposition of the3generic tenso8? contains two scalars, one vector,
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Table 1. The numbers of independent deviatoric tensors in the irreducible decompositigé)of

2D 3D
AN A A A

01 1

1)1 1 1 1

2|3 2 1 2 1 3 1 1

3|7 6 3 1 5 6 11 7 6 2 1

4119 16 10 4 1 16 30 46 39 33 18 10 3 1

three second-order, one third-order and one fourth-order deviatoric tensors. This confirms the
corresponding decompoaosition in the work of Zetal.

4.2. RECURSIVE FORMULAE FOR PHYSICAL TENSORS IN TYPES ® D™

Suppose that we have already the irreducible decompositi&i’o& %" for some positive
integern and now aim to recursively obtain the irreducible decompositio®’gfY. This can
be done in a way similar to that shown in the work of Zal., that is, it can be done by first
considering the general eleme@§*2 € § @ D fors = 0, 1, ..., n. In two dimensions,
noting the character formulae

X (R*@|s000) =1+ 2 cos B,

x (R*®|400m) = 2(1+ 2 cos ) cosd = 2[2 cosh + cos D],

X (R*6F2| 0 00) = 2(L+ 2 cos B) cosst = 2[coS(s — 2)0 + COSs6 + Co(s + 2)6].
corresponding t6 = 0, s = 1 ands > 2 and recalling Theorem 3, we obtain

G®@ =DO L D?, G® = 2D© | D@ L D@,

32
G® = 2p® L DB, GG+ — DE—2 L D© L D6+, (32)

corresponding te = 0,s = 1,s = 2 ands > 2. This is very similar to the brief form of
the irreducible decomposition (260f G in three dimensions, see (39) of Zetial. [6]. This
recursive formula also yields the number formula (30) by recalling Theorem 3.

It can be seen thdtx D™ or &, D;,...;, is one propets—+2)th orderD®-induced irreducible
tensor in the type ® D). TheD®~2-induced one can be expressed as a linear combination
of

Sp18:.2. D

i1ip 23---?;’ 8kf18l22 Di3“'iS’

8313, Ouiy Dyt T 03, Dipin)> 8
WhereT;l,y ;. denotes the symmetrization &f,..,,;.., on the indices(i; ---i,), which is

dpJ

defined as the sum of all the! permutations of/;,..,,;..x on (i1 ---i,), and then divided by
p!. For instance,

13203514 Diso i k-

tj

1 1
L i = E(Tijklm + Tonjkii), Ty = g(Tijk + Tjki + Twij + Tjix + Txji + Tirj)-
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Therefore, after some simple calculations, we can express (32) in details as

G2 = Dy + Sue, (33)
G, = Duiy + Suttiy + [8iy vy + 81,06 — Suvi, ], (34)
é](:l?liz = Dklij_iz + 8lei1i2 + [Skilglig + Slilgkiz - 8k18i1i2]a

+[0kiy €1ip + S1iy Ekiy + Ekiy Otip + E1iy Okin 1B (35)

i1io ige-is in-e-is

Gin2: = Duiy.i, + 8Dy, + 833 [(w i+ (s =D, D, iy + 85, D5y )

(=2 -3

2 5gng;¢J-—2@-—1ﬁﬁﬁmlhm;- (36)

In three dimensions, similar to (32) we can get the following result ferl

GG+ — p6-2 L pG=D L 2p® L pG+D L p+2), (37)

4.2.1. Physical tensors in typesym&®" andsym %"

For any positive integen, the completely symmetrization &f™” < &®" is denoted by
symT ™, and the corresponding tensor subspace is denoted bg &ynfror instance$ =
symé&®2, Similarly, as amth-order tensor ir§, the complete symmetrization 8" ¢ 8®" is
denoted by syr8™, and the corresponding tensor subspace is denoted by®yrithus, the
elastic tensoE belongs to sym$®2. To calculate the characters B andR*?" as restric-
tions on syne®" and syn$®", respectively, we give, but will omit the proof, the following
proposition.

PROPOSITION 8. Consider a tensor subspack” of rth-order and thenth-order tensor
spaceM (), say in M. Suppose that the eigenvalue sefRof |, consists ofo-fold 1,
c1-fold the pairet'?, c,-fold the paire*'?’, ..., and c,-fold the paire*?. Introduce the

generating functiorG

Cr

cQ c1
GW:x,y) =Y xor+ Yy (U +yuU ™D+ + Y (U + 3, U7, (38)
=1 =1 =1

and express the expansion@tU; x, y)" into the form

nr

X0 xi"
G" = ) aoXos+ Y _(a X1,U + by, Y1,U™)
J=1 J=1

nr

Xnr

+-- 4 Z(a(nr)JX(nr)]Unr + by YaurysU™), (39)
J=1
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whereX,; andY,, are multiplies oft; and/ory}, anda,, andb,, are constants determined
by {co, c1, ..., ¢.}. Then, the set of eigenvalues of the restricﬁ@f’f’lsymfa»; consists ofyg" -

fold 1, x;"-fold the paire*'?, Si-fold the pairet?, ..., and x’-fold the paire*". The
character is

X R |gymyen) = Xg" +2(x1" €SO + x3" COS D + -+ + X,/ cOSnrd). (40)

For example, recalling (29), we observe that the eigenvalue Rt in three dimen-
sions is{1, 1, e*'?, e*12%} Therefore, the generating function in (38) takes the form

G =x1+x24 U+ Ut + 20U% + 2.U 2.
We have
G? = (xf + x5 + 2x1x2 + 2y1y2 + 22122)
+(2x1y1 + 20251 + 2y220)U + (2x1y2 + 2x2y2 + 2y122)U ™1
+(vF + 2x121 + 2020)U? + (¥3 + 2x222 + 2x122)U 2
+2y121U°3 + 2y22,U 2 + 22U* + 23U 4.

Thus, from Proposition 8 we know that the eigenvalue scﬂﬁﬂsymwz in three dimensions
consists of five-fold 1, three-fold*#, three-fold &2, one-fold &3¢, and one-fold &,
We obtain the character ﬁX4|Sym 522 and then the irreducible decomposition of sgifi (by
applying Theorem 8) as follows

X (R**symse2) = 5+ 2(3 cos6 + 3 cos 2 + cos I + cos 4),
symS? = 2 +2D®@ + D@,

The last equation shows that the irreducible decomposition of a three-dimensional generic
elastic tensolE = symS® contains independent two scalars, two second-order and one
fourth-order deviatoric tensors. This coincides with the known result in the literattif®,(
7).

As an application of the recursive formulae from (33) to (36), we deduce the irreducible
decompositions of syi&? and symS® in two dimensions as follows. Using (33) and (35),
we immediately obtain

S}j?;l = 8;j0uat + Kijua® + (8,061 + 8 i6:) B + 8ii Dy + 8u D} + Diju, (41)
SymS,f,-z;i, = o'8;;81 + &®Kijur + 8;; D + 8uDij + Djjua, (42)
where

Kijr = 8ix8j1 + 8udjk — i
Basing on (42) and (36), atensH(® € 8§ ® sym$%®2 can be written as

(6)
Hijklmn

= Gijklmn + 8kléijmn + (Smnéijkl + Kklmnég_j + 8k18mnéizj, (43)
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Table 2. The numbers of independent deviatoric tensors in the irreducible decompositions $#28ym

n 2D 3D

A A A A A A A
0 1 1 1 1
1 1 1 3 1 1 6
2 2 1 1 6 2 2 1 21
3 2 2 1 1 10 3 3 2 1 56
4 3 2 2 1 1 15 4 5 1 4 1 2 1 126

where
Al 3 2 A2 4 3
Giszij+a (S,'j, Gij =Dij+a (S,'j,

Gijmn = alKijmn + /31(5iﬁ18jﬁ + &inbja) + D?,  + 5ijD3m,

ijmn

Gijkimn = (8:j D} — %&ﬁﬁDilj + 2085 Dﬁlj + 28, D3 )8 — 63”;5.,~iD% + 8 Dt + Dijiimn.

mn

Using the relationsdf. Zou et al,, [6])
&isDyjr..1 = €jsDyik...1, 8ij Dy + 8 Dij = 8ixDj; + 8, Djg,

from (43), we can obtain the orthogonal irreducible decomposition of3§rin the following
form

symefk),mn = {0"8;;818mn + @ (Kijt1Smn + KitmnSij + KounijO1)}
+(8;;8u DL + 8118mn Dilj + 8,un8ij D)
+(Kiji D%y + Kitmn DY + Kynij D)
+(6ij Dklmn + 8leijmn + 8mnDijkl) + Dijklmn- (44)

Finally, if we give up the requirement of the orthogonality, (44) can be further expressed in
the form

SymSi(jglzlmn = {alcsij(skl(smn + az(lijklémn + Iklmnfsij + Imnijékl)}
+(8:8k Dy + 818 D + 8unij D)
2 2 2
+(Iijlemn + IklmnD,'j + Imnij Dkl)
+(6ij Dklmn + 8leijmn + 8mnDijkl) + Dijklmn- (45)

In Table 2, the numbers of independent deviatoric tensors forS$ynup ton = 4 are
listed, which are obtained by the use of Proposition 8 and Theorem 3. These results are
confirmed by the right total numbe(&}?) in two dimensions and't°) in three dimensions,
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respectively, of the independent components of §{*n For example, it is well known that
the total number of independent components ofaedastic tensoE = symS® is equal to
21. From Table 2 we see that the two scalars, two second-order and one fourth-order deviatoric
tensors involved in the irreducible decomposition of $§ff contribute just 21 independent
components.

We conclude this section by the irreducible decomposition of generic completely symmet-
ric tensors synf.

PROPOSITION 9. In both two and three dimensions, the decompositions of completely
symmetric tensors take the following unified forms

n
SymT(Z") = «a _|_ D(Z) _|_ D(4) _|_ - _|_ D(”) — SymZ]_@("—r) ® D(Z”)’
rn=0 (46)
SymT(Z'H‘l) =V _|_ D(3) _|_ D(5) _|_ - _|_ D(") — SymZ]_@(n*”) ® D(27’+1)‘
r=0

In (46),1%° denotes theth tensor power.g.1%2 = 1® 1 and1®® = 1®1®1. The number of
independent deviatoric tensors in (46) is calculated according to Proposition 8 and Theorem 3,
and the forms oD®-induced completely symmetric irreducible tensors are obtained from the
observation that is skew-symmetric, so that can not be effective.

5. Concluding remarks

In this paper tensors in tensor subspaces have received the name physical tensors. We de-
veloped some simple and practical techniques to obtain irreducible decompositions of physical
tensors of high orders, particularly to provide a fast procedure for giving the number of inde-
pendent deviatoric tensors contained in the irreducible decomposition of physical tensors. As
for applications, a number of detailed irreducible decompositions of physical tensors of high
orders are first constructed. These results should be of increasing interest and importance,
since more and more research fields (such as the strain-gradient theory, second-order elasticity
theory, damage mechanics with a fourth-order damage tensor, etc.) involve high-order physical
tensors. It is emphasized that irreducible decompositions of high-order tensors enable easier
and more intuitionistic physical understanding and characteristics of these tensors, and may
even become a necessity in formulating a physical or constitutive equation which involves
these high-order tensors.

Appendix A. Spherical harmonics

In the group representation theory it is known that deviatoric tensors can be one-to-one connected with spherical
harmonics. For making this paper self-contained, we derive the relationships among deviatoric tensors, spherical
harmonics and Fourier expansions¥dimensional basic Euclidean spageln the following the summation
convention for respected indices is not adopted.

Denote by#, the linear space of all homogeneous polynomials in the coordinate varigbtésiegreemn,
for examplex® x3 x§ € 7. Denote byA = Y"1, 92/8x;9x; the Laplace operator in the basiedimensional
Euclidean spacé&. The linear spacg¢p(x) € Pu:Ap(x) = 0} is called the space of harmonic polynomials
of degreem, and the restricting forms of harmonic polynomials of degreto the unit sphere i€ are called
spherical harmonicef degreen. We denote by, the linear space of all spherical harmonics of degteé is
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well known (cf. [16, pp. 302—309], [17, pp. 88—89]) that the linear sp&Gg and themth order irreducible tensor
spaceD ™) have the same dimensions

Dy, = dim #,,, = dim D™,

In general, the space®,, and#, for different nonnegative integers andn are mutually orthogonal in the
following inner product sense

(frg) = 75 FMgmdn =0, forany f e Hu.g € . (A1)

wheren denotes the generic unit vector and the integration is over the unit sphere.
It is well known that any square-integrable scalar functiom) on the unit sphere can be expanded into an
absolutely convergent Fourier series in the form

F(n)=Fo+ Y Fu(), Fu() € Hpn.

m=1

Denoting by<2 the area of the unit sphere &) we have
Fo= Q—lf F(n) dn.

To expressF, (n), let us introduce an orthogonal basis, $&#y, ;(n):J = 1,..., Dy}, of #,,. For instance,
the sets

{cosma, Sin m¢},

{Py;,0(C086), Py 1(COSH) COS @, Py, 1(COSH)SING, ...,
Py, m (C0S6) cosme, Py, m(COSO) Sin me},
constitute orthogonal bases &f,, in two and three dimensions, respectively, where
n =(cos¢, sing) or n = (cosé cos¢, cosoh sin ¢, sin ¢)
denotes the polar or spherical polar coordinate representation of the two- or three-dimensional unit, salor
P, r(y) are the Legendre and associated Legendre functions that can be expressed in terms of the Rodrigues forms
as follows

(1- yZ)r/Z gntr
My dym—i-r

P (y) = o2 -

By definition, we have

D
Fn(M) =Y am g Ym g, g =Yy, Ym,,)*lyg F(n)Y,, ;(n)dn.
J=1

A one-to-one correspondence relation between the generic spherical harfgiiigsof degreem and the
genericmth order deviatoric tensdd ™ can be established in the following form

Fn(n) = D(m) on®m — Z Di1i2~~~imni1ni2 NP T

i102...im
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where

Dy,
D(m) = Z Am,J9m,J Ym,J(n) =0mn,J © n®m’ On,J = Q;l% Ym,J(n)n®m dn,

J=1
with
Q= mis2 N =dime
"TNN+2 -(N+2n-2" T
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