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Abstract. In this paper we use the term ‘physical tensor’ to stand for a tensor that belongs to a tensor subspace.
Based on the relationship among the characters of rotation representation, some techniques are developed in order
to give the numbers of independent deviatoric tensors contained in the irreducible decompositions of physical
tensors, even prior to the constructions of the irreducible decompositions. A number of examples are shown and
many of them are new results.
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1. Introduction

Denote byE the basic (or physical) Euclidean space. Most tensors involved in the physical
and engineering sciences belong to certain linear subspaces of the full tensor spaces inE .
For instance, stress, strain and thermal expansion tensors are elements of the second-order
symmetric tensor spaceS. A photo-elastic tensorM is a linear transformation onS, or equiv-
alently, can be read as a second-order tensor inS, or equivalently, an element ofS⊗S, where
⊗ denotes tensor product. An elastic tensorE and a second rank elastic tensorE2 are second-
order symmetric and third-order symmetric tensors inS. A piezoelectric (or piezomagnetic)
tensorP is a linear transformation fromS to E , or equivalently, an element ofE ⊗ S. In their
component forms these tensors read:

Pijk = Pikj , Eijkl = Ejikl = Eklij ,
Mijkl = Mjikl = Mijlk, E2

ijklmn = E2
jiklmn = E2

klijmn = E2
mnklij

}
.

Modelling a quadratic, cubic, or quartic yielding function in the theory of plasticity requires a
second-, third-, or fourth-order symmetric tensor inS, rather than a generic fourth-, sixth-, or
eighth-order tensor inE .

Therefore, we use the termphysical tensorsto represent tensors that belong to linear
subspaces of the full tensor spaces inE . The aim is to develop some specific techniques for
physical tensors in analyzing or constructing their irreducible decompositions, that may not
be available for generic tensors.

It is well known from the theory of group representations that, in principle, a tensor of
any finite order can be decomposed into a sum of irreducible tensors. Irreducible decomposi-
tions of tensors allow to separate the tensors in consideration into their isotropic and various
anisotropic parts, and distinguish the rotationally invariant quantity from every anisotropic
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part. Thus, this enables easier and more intuitive physical understandings and characteristics
of the tensors. Proper examples of such advantages can be seen in many papers (e.g. [1,
2]). Irreducible decompositions may even become a necessity in formulating a physical or
constitutive equation which involves high-order tensors.

Some operable methods on irreducible decompositions of tensors were proposed by Spen-
cer [3], Hannabuss [4], Rychlewski [5] and Zouet al. [6] among few others. All these works
deal with generic tensors, rather than physical tensors. Although the irreducible decompos-
itions of physical tensors can be reduced from those of generic ones, such reductions need
to be guided by prior knowledge on the numbers of independent deviatoric tensors that can
be contained in the irreducible decompositions of the considered physical tensors. To know
the number of independent deviatoric tensors in the irreducible decomposition of a concerned
physical tensor prior to the detailed construction of the irreducible decomposition is itself of
importance, which to a certain degree reveals the structure of this physical tensor.

To find such numbers for physical tensors of various types, prior to the construction of the
irreducible decompositions, is one of the main aims of the present paper. This is done at first
by linking such numbers with the characters of rotation representations as restrictions on the
physical tensors and on deviatoric tensors, and then some techniques are developed for the
evaluation of the characters of rotation representations for physical tensors of various types.
We also develop some methods to derive the irreducible decompositions of physical tensors
directly. A number of examples, many of which are new results, are given.

In the group representation theory it known that deviatoric tensors can be one-to-one con-
nected with spherical harmonics. To make this paper self-contained, we give the relationships
among deviatoric tensors, spherical harmonics and Fourier expansions in Appendix A.

Finally, we emphasize that the suggested method and obtained results in this paper are
useful not only in the context of elasticity theory (cf.Backus [7], Cowin [8]), damage mech-
anics (cf. Onat [9], Krajcinovic and Mastilovic [10], He and Curnier [1], Zheng and Hwang
[2]), plasticity and formulation of higher-order interactions among multiply physical fields (cf.
Juresckhe [11]), but to any fields where tensors of high orders are involved.

2. Preliminaries

This paper is written in full consistence with the paper of Zouet al. [6], which deals with
the irreducible decomposition of generic tensors. The genericnth order tensor and the generic
nth order deviatoric tensor in the basic Euclidean spaceE are denoted byT(n) or Ti1...in and
D(n) or Di1...in , respectively. The corresponding linear spaces are signified asE⊗n andD (n),
where ‘⊗’ signifies tensor product. The termdeviatoric tensoris synonymous withcompletely
symmetric and traceless tensor,e.g.

Di1i2i3...in = Di2i1i3...in = Di3i2i1...in = · · · = Dini2i3...i1, Dssi3...in = 0.

By definition, scalars and vectors are zeroth- and first-order deviatoric tensors, respectively,
and the generic scalar is denoted by eitherα or D(0) and the generic vector, by eitherv or D(1).
It is well known that dimD (n) is always equal to 2 for any positive integern when dimE = 2,
and dimD (n) equals 2n+1 for any nonnegative integernwhen dimE = 3. Tensor components
are referred to an arbitrarily given orthonormal frame{ei} with minuscule Latin indices. The
summation convention applies to repeated minuscule Latin indices only, not to majuscule ones
which are also used in this paper in several cases. The inner product inE is denoted by a dot
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‘ ·’. To E⊗n and all its subspaces (includingD (n)), we appointTi1...inSi1...in as the inner product
of anyT, S∈ E⊗n and use the abstract notationT ◦ S for Ti1...inSi1...in .

A second-order tensorR is said to beorthogonal, if RikRjk = RkiRkj = δij , whereδij is
the Kronecker delta. Further, if the determinant of theR is equal to 1, it is said to be arotation.
An nth-order tensorI (n) is said to behemitropicor isotropic, if the following invariance

Ri1j1 . . . RinjnIj1...jn = Ii1...in
holds for any rotation or any orthogonal tensorR, respectively. The tensorRi1j1 . . . Rinjn Tj1...jn
is abstractly denoted byR×n[T(n)], which induces the linear transformationR×n onE⊗n, called
thenth Kronecker powerof R (cf. [12, 13]).

It is well known that the second-order identity tensor1 is the basic isotropic tensor, and1
and the permutation tensorε, are the basic hemitropic tensors. Because of the identities

εij εrs = δirδjs − δisδjr , or

εijkεrst = δirδjsδkt + δisδjt δkr + δit δjrδks − δisδjrδkt − δit δjsδkr − δirδjt δks,

in two or three-dimensional spaceE , respectively, any isotropic tensor is expressible as a linear
combination of tensors in the form per(1⊗ · · · ⊗ 1), and any hemitropic tensor is expressible
as a linear combination of tensors in the forms

per(1⊗ · · · ⊗ 1), per(ε ⊗ 1⊗ · · · ⊗ 1), (1)

where ‘per’ indicates a permutation operation. For instance,δirδjs and δis δjr are two per-
mutations ofδij δrs.

A D(s)-induced nth-orderirreducible tensorcan be defined as a linear hemitropic function
of D(s), and is denoted byI (n,s) [D(s)] or Ii1...inj1...jsDj1...js . By definition, the relation

I (n,s)[R×s[D(s)]] = R×n[I (n,s)[D(s)]], or

Ii1...inj1...jsRj1k1 . . . RjsksDk1...ks = Ri1l1 . . . RinlnIl1...lnj1...jsDj1...js ,

}
(2)

holds for any rotationR and anysth-order deviatoric tensorD(s). This requires thatIi1...inj1...js
or, in brief, I (n,s) must be (n+ s)th-order hemitropic tensor.

In the work of Zouet al., the recursive formulae for constructing the orthogonal irreducible
decompositions of the genericnth order tensorT(n) for any finite positive integern in both
two and three dimensions are established. The decompositions take the form

T(n) =
J n0∑
J=1

αJ I (n,0)J +
J n1∑
J=1

I (n,1)J [vJ ] +
J n2∑
J=1

I (n,2)J [D(2)
J ] + · · · +

J nn∑
J=1

I (n,n)J [D(n)
J ], (3)

or in brief,

T(n) = J n0 α u J n1 vu J n2 D(2) u · · · u J nnD(n), (4)
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with

J ns =


0, if n+ s = odd,(
n
n+s

2

)
, if n+ s = even,

(5)

J ns =
[
n

s

]
−
[
n

s + 1,

]
, (6)

in two or three dimensions, respectively, where
(
n

s

)
, [ns ] and J ns in two dimensions are the

coefficients ofxs in the expansions of(1+ x)n, (1+ x + 1/x)n and(x + 1/x)n, respectively.
The majuscule Latin indexJ (J = 1, . . . , J ns ) signifies that the decomposition (3) involvesJ ns
independentsth-order deviatoric tensors. In other words,J ns calculated from (5) or (6) denotes
the number of independentsth-order deviatoric tensors involved in the decompositions (3) or
(4).

A given irreducible decomposition (3) means that the set of hemitropic tensorsI (n,s)J is
given or independent ofT(n). One can easily verify that

1+ 2
n∑
s=1

J ns = 2n or
n∑
s=0

(1+ 2s)J ns = 3n (7)

in two or three dimensions, respectively. This implies the following basic proposition.

PROPOSITION 1. All the linear transformationsI (n,s)J : D (s) → E⊗n in the irreducible
decomposition(3) must be isomorphic, that is,dim I (n,s)J [D (s)] = dimD (s).

3. Numbers of deviatoric tensors and characters of rotation representations

3.1. KRONECKER PRODUCTS AND CHARACTERS OF LINEAR TRANSFORMATIONS

Let V1 andV2 be two Euclidean spaces andL1 andL2 be any two linear transformations on
V1 andV2, respectively. We always assemble the inner product

(v1⊗ v2) ◦ (u1⊗ u2) = (v1 ◦ u1)(v2 ◦ u2), (for anyvk,uk ∈ Vk)

to the tensor product spaceV1 ⊗ V2, so thatV1 ⊗ V2 becomes a new Euclidean space of the
dimensions dimV1 dimV2. The Kronecker product (cf. [13, pp. 68–70]), denoted byL1× L2,
of L1 andL2, is defined as a linear transformation onV1⊗ V2 such that

L1× L2[v1 ⊗ v2] = L1[v1] ⊗ L2[v2], (for anyvk ∈ Vk). (8)

Thus, if σk for k = 1,2 are (real or complex) eigenvalues ofL k with respect tovk the
associated eigentensors,i.e. L1[v1] = σ1v1 andL2[v2] = σ2 v2, thenσ1σ2 is an eigenvalue of
L1× L2 with v1 ⊗ v2 as an associated eigentensor, and the set of eigenvalues ofL1× L2 is

{σ1σ2: for all eigenvaluesσ1 of L1 andσ2 of L2}. (9)
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The apparent associativity of the Kronecker product allows us to define Kronecker powers
recursively, such as thenth Kronecker powerR×n = R×R×(n−1) of the rotationR which was
described previously.

In the theory of group representations, the concept ofcharacterχ(L ) of a linear transform-
ationL plays a key role.χ(L ) is defined as the sum of all eigenvalues ofL . From (9) it is seen
that

χ(L1× L2) = χ(L1)χ(L2). (10)

Particularly, for any rotationR and any positive integern, χ(R×n) = χ(R)n.
It is well known that in two dimensions, the eigenvalues ofR are two unit conjugated

complex numbers e± iθ , say, so that we have

χ(R) = eiθ + e−iθ = 2 cosθ, χ(R×n) = (2 cosθ)n; (11)

and in three dimensions, the set of eigenvalues ofR can be expressed as{1,e± iθ }, so that we
have

χ(R) = 1+ eiθ + e−iθ = 1+ 2 cosθ, χ(R×n) = (1+ 2 cosθ)n, (12)

where i= √−1 is the unit imaginary number. Geometrically,θ is therotation angleof R.

3.2. NUMBERS OF INDEPENDENT DEVIATORIC TENSORS IN LINKING CHARACTERS OF

ROTATION REPRESENTATIONS

It is easy to check that for any rotationR and any positive integern, R×n[D(n)] is still devi-
atoric. In other words, the linear spaceD (n) is an invariant linear subspace ofR×n, i.e. R×n
[D (n)] ⊆ D (n). Therefore, we can define the restriction, denoted byR×n|D(n) or the simpler
R×n|D , of R×n on D (n) through the relationR×n [D(n)] = R×n|D [D(n)]. Noting the identity
(2) for anyD(s)-inducednth-order irreducible tensor, we see that theD (s)-induced linear space
I (n,s)[D (s)] is also an invariant linear subspace ofR×n. Furthermore, from (2) one can see that,
if σ is an eigenvalue ofR×s |D , then it is also an eigenvalue of the restriction ofR×n on I (n,s)

[D (s)].
Now, we are ready to establish the important relationship between the characters of ro-

tation representations and the numbers of independent deviatoric tensors in the irreducible
decompositions of physical tensors. Consider the linear spaceM(n) of all nth-order tensors in
a certain physical tensor type (e.g.the elastic tensor type, piezoelectric tensor type). A general
element inM(n) will be denoted byM (n). Restricting the irreducible decomposition (3) on
M(n), we are led to the irreducible decomposition ofM (n), which is expressed coincidently in
the normal and brief forms:

M (n) =
jn0∑
J=1

αJ I (n,0)J +
jn1∑
J=1

I (n,1)J [vJ ] +
jn2∑
J=1

I (n,2)J [D(2)
J ] + · · · +

jnn∑
J=1

I (n,n)J [D(n)
J ]

= jn0α u jn1 vu jn2 D(2) u · · · u jnnD(n).

(13)

Recalling Proposition 1, we observe that all the spacesI (n,s)J [D (s)
J ] for J = 1, . . . , jns are

of the same dimensions as dimD (s). Consequently, the restriction ofR×n on I (n,s)J [D (s)] is
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equivalent toR×s|D . These analyses thus yield that the eigenvalue set and the character of
R×n as restriction onI (n,s)J [D (s)] are completely the same as those ofR×s|D . We obtain the
following basic counting number property.

PROPOSITION 2. The numbersjn0 , jn1 , . . . , j
n
n of independent deviatoric tensors in the

orthogonal irreducible decomposition(13)and the characters are related in the form

χ(R×n|M(n)) = jn0 + jn1χ(R×1|D)+ · · · + jnn χ(R×n|D). (14)

It is well known in the theory of group representations, or can be seen in the next subsection
for the sake of making this paper self-contained, that the set of eigenvalues and character of
R×s|D are respectively

{e± isθ}, χ(R×s |D) = 2 cossθ (15)

in two dimensions, and

{1,e± iθ ,e± i2θ , . . . ,e± isθ }, χ(R×s |D) = 1+ 2(cosθ + · · · + cos sθ) (16)

in three dimensions. We are ready to prove the followingcounting number theorem.

THEOREM 3. When the characterχ(R×n|M(n)) is written in the form

χ(R×n|M(n)) = χn0 + 2(χn1 cosθ + χn2 cos 2θ + · · · + χnn cosnθ)

= χn0 +
n∑
s=1

χns (e
isθ + e−isθ ), (17)

the numbersjns , s = 0,1, . . . , n, of independent deviatoric tensors in the irreducible decom-
position(13)of the generic physical tensorM (n) ∈M(n) can be calculated as follows

jns =
{
χns , in 2D space,

χns − χns+1, in 3D space, withχnn+1 = 0.
(18)

Proof. In two dimensions, substituting (15)2 in (14) and comparing it with (17), we find
that (18)1 follows directly. In three dimensions, substitution of (16)2 results in

χ(R×n|M(n)) = (jn0 + · · · + jnn )+ 2(jn1 + · · · + jnn ) cosθ

+ · · · + 2(jnn−1 + jnn ) cos(n− 1)θ + 2jnn cosnθ.

Comparing the above coefficients with those in (17)2 we simply arrive at the relation (18)2.2
Thus, it is possible to obtain the numbersjns prior to the constructions of irreducible de-

compositions, and the key to obtainjns is to evaluate the charactersχ(R×n|M(n) ) for physical
tensors. Now, one can skip over the next subsection, which is written mostly for the purpose of
making this paper self-contained, and go to the next section which deals with some interesting
types of physical tensors.
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3.3. CHARACTERS OFR×n|D : A SUPPLEMENT

In two dimensions, the definition of a rotationR can be given geometrically by

R · e1 = cosθe1 + sin θe2, R · e2 = − sin θe1+ cosθe2,

or in their brief form:R · ω = e−iθω with ω = e1 + i e2, where{ei} is a given orthonormal
basis ofE . Consequently, for any positive integern, we haveR×n [ω⊗n] = e−inθω⊗n, or

R×n[P(n)] = cosnθP(n) + sin nθQ(n),R×n[Q(n)] = − sinnθP(n) + cosnθQ(n), (19)

whereω⊗n (ω⊗n = ω⊗ ω⊗(n−1)) is thenth tensor power ofω, andP(n) andQ(n) as the real
and imaginary parts ofω⊗n constitute an orthogonal basis ofD (n). The formulae (19) are very
useful for characterizing various anisotropies ([14, 15]). A component form ofD(n) can be
written as follows

D(n) = Re{c(n)ω̄⊗n}, (20)

wherec(n) is a complex number, andRe indicates the real part. From (19) and (20) it is
seen that the eigenvalue set of the restrictionR×n|D of R×n on the 2D subspaceDn for each
positive integern consists of the pair e± i nθ and the character isχ(R×n|D) = 2 cosnθ , as
shown in (15).

In three dimensions, for any given rotationR, we assign an orthonormal basis{e1, e2, e3}
of E such thate3 is the unit axial vector ofR, i.e. R · e3 = e3. Thus, a geometrical definition
of R can be given as

R · e3 = e3, R · e1 = cosθe1+ sin θe2, R · e2 = − sin θe1 + cosθe2,

or equivalently,R · e3 = e3 andR · ω = e−iθω. Further, introducing the complex vector

ωφ = 2e3 + e−iφω − eiφω̄ (21)

and notingωφ ·ωφ = 0, we see that thenth tensor powerω⊗nφ is deviatoric. Consequently, the
coefficient tensorsPn0 andW(n)

s in the expansion ofω⊗nφ

ω⊗nφ = P(n)0 +
n∑
s=1

{e−isφW(n)
s + (−1)s eisφW̄(n)

s }

are all deviatoric. It is evident thatP(n)0 is real whileW(n)
s for 1 6 s 6 n are complex. The

relations

R×n[ω⊗nφ ] = ω⊗nθ+φ = P(n)0 +
n∑
s=1

{e−is(θ+φ)W(n)
s + (−1)s eis(θ+φ)W̄(n)

s }

further yields

R×n[P(n)0 ] = P(n)0 , R×n[W(n)
s ] = e−isθW(n)

s , 16 s 6 n. (22)
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Therefore, the subspaceDn
0 spanned byP(n)0 and the subspaceDn

s spanned by the real and
imaginary partsP(n)s andQ(n)

s , of W(n)
s are all the invariant subspaces ofR×n with one-fold the

eigenvalue 1 and one-fold the pair of eigenvalues e± isθ , respectively. Further, by observing

W(n)
s ◦R×n[W(n)

t ] = e−itθW(n)
s ◦W(n)

t = (RT )×n[W(n)
s ] ◦W(n)

t = e−isθW(n)
s ◦W(n)

t ,

W(n)
s ◦R×n[W̄(n)

t ] = eitθW(n)
s ◦ W̄(n)

t = (RT )×n[W(n)
s ] ◦ W̄(n)

t = e−isθW(n)
s ◦ W̄(n)

t ,

whereRT denotes the transpose ofR, we find that the(2n + 1) deviatoric tensorsP(n)0 , P(n)1 ,
Q(n)

1 , . . . ,P(n)n , Q(n)
n are mutually orthogonal. Consequently, due to dimDn = 2n+ 1 in three

dimensions, these(2n + 1) tensors constitute an orthogonal basis ofDn. In other words, any
D(n) ∈ Dn can be expressed in the following component form

D(n) = α(0)P(n)0 +Re

n∑
s=1

{c(n)s W̄(n)
s }, (23)

whereα(n) is real andc(n)s are complex numbers. Furthermore, from (22) and (20) it is seen
that the set of eigenvalues and the character of the restrictionR×n|D are just those were given
in (16).

4. Irreducible decompositions of physical tensors

4.1. PHYSICAL TENSORS IN TYPES OFM(n1)

1 ⊗M(n2)

2 AND S⊗n

The following proposition and its corollary are quite practical.

PROPOSITION 4.Let n1 andn2 be any two positive integers,n = n1 + n2, andM(n1)

1 and
M(n2)

2 be two physical tensor spaces of ordersn1 andn2, respectively. For the physical tensor
spaceM(n) =M(n1)

1 ⊗M(n2)

2 , then

χ(R×n|M(n)) = χ(R×n1|
M
(n1)
1
)χ(R×n2|

M
(n2)
2
). (24)

COROLLARY 5. LetS be the second-order symmetric tensor space in the normal Euclidean
spaceE , n be any positive integer, andS⊗n be thenth order tensor space inS. Then,

χ(R×(2n)|S⊗n) = χ(R×2|S)n. (25)

Proof. According to the definition (8), we haveR×n|M(n) = R×n1|M(n1)× R×n2|M(n2) . Ap-
plying (10) yields (24). The property (25) is a simple consequence of (24) because of the
commutativity of Kronecker product. 2

As an application of (24), we have

χ(R×(n+1)|E⊗D(n) ) = (2 cosθ)(2 cosnθ) = 2[cos(n− 1)θ + cos(n+ 1)θ]
in two dimensions, and

χ(R×(n+1)|E⊗D(n) ) = (1+ 2 cosθ)(1+ 2 cosθ + · · · + 2 cosnθ)

= 3+ 6[cosθ + · · · + cos(n− 1)θ] + 4 cosnθ + 2 cos(n+ 1)θ
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in three dimensions. Recalling Theorem 3, we obtain the following result.

PROPOSOTION 6.For any integern > 1, the irreducible decompositions of the generic
elementG(n+1) of E ⊗D (n) take the following forms

G(n+1) =
{

D(n−1) u D(n+1) in two dimensions,

D(n−1) u D(n) u D(n+1) in three dimensions.
(26)

The result (26)2 was used in the work of Zouet al. [6] in constructing their recursive formulae
of the orthogonal irreducible decompositions for three-dimensional generic tensors of any
finite orders.

Denote the generic element ofS⊗n by S(n). For instance, the photo-elastic tensorM is S(2).
It is well known that, in both two and three dimensions, the generic second order symmetric
tensorScan be expressed in the unified form

S= α1+ D(2). (27)

Recalling the forms (15) and (16) for the sets of eigenvalues and characters ofR×2|D , we
obtain the sets and characters ofχ(R×2|S), respectively, as shown below

{1,e± i2θ }, χ(R×2|S) = 1+ 2 cos 2θ (28)

in two dimensions, and

{1,1,e± iθ ,e± i2θ}, χ(R×2|S) = 2(1+ cosθ + cos 2θ) (29)

in three dimensions.
Denote the coefficients of eisθ in the expansions of(1 + eiθ + e−iθ )n and of (2 + eiθ +

e−iθ + ei2θ + e−i2θ )n by [ns ] and{2ns }, respectively. From (28), (29) and Theorem 3 we obtain
the following result.

PROPOSITION 7.The irreducible decomposition of the2nth-order tensorS(n) in E as the
genericnth-order tensor inS takes the form

S(n) = j2n
0 α u j2n

1 vu j2n
2 D(2) u · · ·u j2n

2nD(2n),

with, in two dimensions

j2n
s =


0, if s = odd,[
n

s/2

]
, if s = even,

j2n
0 + 2

2n∑
s=1

j2n
s = 3n, (30)

and in three dimensions

j2n
s =

{
2n

s

}
−
{

2n
s + 1

}
,

2n∑
s=0

(1+ 2s)j2n
s = 6n. (31)

Table 1 lists the nonzero numbersj2n
s up ton = 4. For example, from this table we read that

the irreducible decomposition of the 3D generic tensorS(2) contains two scalars, one vector,
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Table 1. The numbers of independent deviatoric tensors in the irreducible decompositions ofS(2n).

2D 3D

n j2n
0 j2n

2 j2n
4 j2n

6 j2n
8 j2n

0 j2n
1 j2n

2 j2n
3 j2n

4 j2n
5 j2n

6 j2n
7 j2n

8

0 1 1

1 1 1 1 1

2 3 2 1 2 1 3 1 1

3 7 6 3 1 5 6 11 7 6 2 1

4 19 16 10 4 1 16 30 46 39 33 18 10 3 1

three second-order, one third-order and one fourth-order deviatoric tensors. This confirms the
corresponding decomposition in the work of Zouet al.

4.2. RECURSIVE FORMULAE FOR PHYSICAL TENSORS IN TYPESS ⊗D (n)

Suppose that we have already the irreducible decomposition ofS(n) ∈ S⊗n for some positive
integern and now aim to recursively obtain the irreducible decomposition ofS(n+1). This can
be done in a way similar to that shown in the work of Zouet al., that is, it can be done by first
considering the general elementsĜ(s+2) ∈ S ⊗D (s) for s = 0,1, . . . , n. In two dimensions,
noting the character formulae

χ(R×(2)|S⊗D(0) ) = 1+ 2 cos 2θ,

χ(R×(3)|S⊗D(1) ) = 2(1+ 2 cos 2θ) cosθ = 2[2 cosθ + cos 2θ],
χ(R×(s+2)|S⊗D(s) ) = 2(1+ 2 cos 2θ) cos sθ = 2[cos(s − 2)θ + cossθ + cos(s + 2)θ].

corresponding tos = 0, s = 1 ands > 2 and recalling Theorem 3, we obtain

Ĝ(2) = D(0) u D(2), Ĝ(4) = 2D(0) u D(2) u D(4),

Ĝ(3) = 2D(1) u D(3), Ĝ(s+2) = D(s−2) u D(s) u D(s+2).
(32)

corresponding tos = 0, s = 1, s = 2 ands > 2. This is very similar to the brief form of
the irreducible decomposition (26)2 of G in three dimensions, see (39) of Zouet al. [6]. This
recursive formula also yields the number formula (30) by recalling Theorem 3.

It can be seen that1⊗D(s) or δklDi1···is is one proper(s+2)th orderD(s)-induced irreducible
tensor in the typeS ⊗D (s). TheD(s−2)-induced one can be expressed as a linear combination
of

δklδî1î2Dî3···îs , δkî1δlî2Di3···is ,

δî1î2(δkî3Dî4···îs l + δlî3Dî4···îs k), δî1î2δî3î4Dî5···îs kl .

whereTî1···îpj ···k denotes the symmetrization ofTi1···ipj ···k on the indices(i1 · · · ip), which is
defined as the sum of all thep! permutations ofTi1···ipj ···k on (i1 · · · ip), and then divided by
p!. For instance,

Tîjklm̂ =
1

2!(Tijklm + Tmjkli), Tîĵ k̂ =
1

3! (Tijk + Tjki + Tkij + Tjik + Tkji + Tikj ).



Irreducible decompositions of physical tensors of high orders283

Therefore, after some simple calculations, we can express (32) in details as

Ĝ
(2)
kl = Dkl + δklα, (33)

Ĝ
(3)
kli1
= Dkli1 + δklui1 + [δki1vl + δli1vk − δklvi1], (34)

Ĝ
(4)
kli1i2

= Dkli1i2 + δklDi1i2 + [δki1δli2 + δli1δki2 − δklδi1i2]α
+[δki1εli2 + δli1εki2 + εki1δli2 + εli1δki2]β, (35)

Ĝ
(s+2)
kli1...is

= Dkli1...is + δklDi1···is + δî1î2
[
δklDî3···îs + (s − 2)(δkî3Dî4···îs l + δlî3Dî4···îs k)

−(s − 2)(s − 3)

4
δî3î4Dî5···îs kl

]
− 2(s − 1)δkî1δlî2Dî3···îs . (36)

In three dimensions, similar to (32) we can get the following result fors > 1

Ĝ(s+2) = D(s−2) uD(s−1) u 2D(s) u D(s+1) u D(s+2). (37)

4.2.1. Physical tensors in typessymE⊗n andsymS⊗n
For any positive integern, the completely symmetrization ofT(n) ∈ E⊗n is denoted by
symT(n), and the corresponding tensor subspace is denoted by symE⊗n. For instance,S =
symE⊗2. Similarly, as annth-order tensor inS, the complete symmetrization ofS(n) ∈ S⊗n is
denoted by symS(n), and the corresponding tensor subspace is denoted by symS⊗n. Thus, the
elastic tensorE belongs to symS⊗2. To calculate the characters ofR×n andR×2n as restric-
tions on symE⊗n and symS⊗n, respectively, we give, but will omit the proof, the following
proposition.

PROPOSITION 8.Consider a tensor subspaceM(r) of rth-order and thenth-order tensor
spaceM⊗n

(r) , say inM(r). Suppose that the eigenvalue set ofR×r |M(r) consists ofc0-fold 1,
c1-fold the pair e± iθ , c2-fold the pair e± i2θ , . . ., and cr -fold the pair e± irθ . Introduce the
generating functionG

G(U ; x, y) =
c0∑
I=1

x0I +
c1∑
I=1

(x1IU + y1IU
−1)+ · · · +

cr∑
I=1

(xrIU
r + yrIU−r ), (38)

and express the expansion ofG(U ; x, y)n into the form

Gn =
χnr0∑
J=1

a0JX0J +
χnr1∑
J=1

(a1JX1JU + b1JY1JU
−1)

+ · · · +
χnrnr∑
J=1

(a(nr)JX(nr)JU
nr + b(nr)J Y(nr)JU−nr), (39)
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whereXqJ andYqJ are multiplies ofxrI and/orytK , andaqJ andbqJ are constants determined
by {c0, c1, . . . , cr}. Then, the set of eigenvalues of the restrictionR×nr |symM⊗n

(r)
consists ofχnr0 -

fold 1, χnr1 -fold the paire± iθ , Sn2-fold the paire± i2θ , . . ., andχnrnr -fold the paire± inrθ . The
character is

χ(R×nr |symM⊗n
(r)
) = χnr0 + 2(χnr1 cosθ + χnr2 cos 2θ + · · · + χnrnr cosnrθ). (40)

For example, recalling (29), we observe that the eigenvalue set ofR×2|S in three dimen-
sions is{1,1,e± iθ , e± i2θ}. Therefore, the generating function in (38) takes the form

G = x1+ x2+ y1U + y2U
−1+ z1U

2+ z2U
−2.

We have

G2 = (x2
1 + x2

2 + 2x1x2+ 2y1y2+ 2z1z2)

+(2x1y1+ 2x2y1+ 2y2z1)U + (2x1y2+ 2x2y2+ 2y1z2)U
−1

+(y2
1 + 2x1z1+ 2x2z1)U

2+ (y2
2 + 2x2z2+ 2x1z2)U

−2

+2y1z1U
3+ 2y2z2U

−3+ z2
1U

4+ z2
2U
−4.

Thus, from Proposition 8 we know that the eigenvalue set ofR×4|symS⊗2 in three dimensions
consists of five-fold 1, three-fold e± iθ , three-fold e± i2θ , one-fold e± i3θ , and one-fold e± i4θ .
We obtain the character ofR×4|symS⊗2 and then the irreducible decomposition of symS(2) (by
applying Theorem 8) as follows

χ(R×4|symS⊗2) = 5+ 2(3 cosθ + 3 cos 2θ + cos 3θ + cos 4θ),

symS(2) = 2α u 2D(2) uD(4).

The last equation shows that the irreducible decomposition of a three-dimensional generic
elastic tensorE = symS(2) contains independent two scalars, two second-order and one
fourth-order deviatoric tensors. This coincides with the known result in the literature (cf. [3,
7]).

As an application of the recursive formulae from (33) to (36), we deduce the irreducible
decompositions of symS(2) and symS(3) in two dimensions as follows. Using (33) and (35),
we immediately obtain

S
(2)
ijkl = δij δklα1+Kijklα2+ (δik̂εj l̂ + δj l̂εik̂)β1+ δijD1

kl + δklD2
ij +Dijkl, (41)

symS(2)ijkl = α1δij δkl + α2Kijkl + δijDkl + δklDij +Dijkl , (42)

where

Kijkl = δikδjl + δilδjk − δij δkl.
Basing on (42) and (36), a tensorH(6) ∈ S ⊗ symS⊗2 can be written as

H
(6)
ijklmn = Ĝijklmn + δklĜijmn + δmnĜijkl +KklmnĜ1

ij + δklδmnĜ2
ij , (43)
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Table 2. The numbers of independent deviatoric tensors in the irreducible decompositions of symS(2n).

n 2D 3D

j2n
0 j2n

2 j2n
4 j2n

6 j2n
8

(n+2
2
)

j2n
0 j2n

2 j2n
3 j2n

4 j2n
5 j2n

6 j2n
8

(n+5
5
)

0 1 1 1 1

1 1 1 3 1 1 6

2 2 1 1 6 2 2 1 21

3 2 2 1 1 10 3 3 1 2 1 56

4 3 2 2 1 1 15 4 5 1 4 1 2 1 126

where

Ĝ1
ij = D3

ij + α2δij , Ĝ2
ij = D4

ij + α3δij ,

Ĝijmn = α1Kijmn + β1(δim̂εjn̂ + εim̂δjn̂)+D2
ijmn + δijD2

mn,

Ĝijklmn = (δijD1
m̂n̂ − 1

2δm̂n̂D
1
ij + 2δim̂D

1
n̂j + 2δjm̂D

1
n̂i )δk̂l̂ − 6δik̂δj l̂D

1
m̂n̂ + δijD1

klmn +Dijklmn.

Using the relations (cf. Zouet al., [6])

εisDsjk...l = εjsDsik...l , δijDkl + δklDij = δikDjl + δjlDik,

from (43), we can obtain the orthogonal irreducible decomposition of symS(3) in the following
form

symS(3)ijklmn = {α1δij δklδmn + α2(Kijklδmn +Kklmnδij +Kmnij δkl)}
+(δij δklD1

mn + δklδmnD1
ij + δmnδijD1

kl)

+(KijklD2
mn +KklmnD2

ij +KmnijD2
kl)

+(δijDklmn + δklDijmn + δmnDijkl)+Dijklmn. (44)

Finally, if we give up the requirement of the orthogonality, (44) can be further expressed in
the form

symS(3)ijklmn = {α1δij δklδmn + α2(Iijklδmn + Iklmnδij + Imnij δkl)}
+(δij δklD1

mn + δklδmnD1
ij + δmnδijD1

kl)

+(IijklD2
mn + IklmnD2

ij + ImnijD2
kl)

+(δijDklmn + δklDijmn + δmnDijkl)+Dijklmn. (45)

In Table 2, the numbers of independent deviatoric tensors for symS(n) up to n = 4 are
listed, which are obtained by the use of Proposition 8 and Theorem 3. These results are
confirmed by the right total numbers

(
n+2

2

)
in two dimensions and

(
n+5

5

)
in three dimensions,



286 Q.-S. Zheng and W.-N. Zou

respectively, of the independent components of symS(n). For example, it is well known that
the total number of independent components of a 3D elastic tensorE = symS(2) is equal to
21. From Table 2 we see that the two scalars, two second-order and one fourth-order deviatoric
tensors involved in the irreducible decomposition of symS(2) contribute just 21 independent
components.

We conclude this section by the irreducible decomposition of generic completely symmet-
ric tensors symT.

PROPOSITION 9. In both two and three dimensions, the decompositions of completely
symmetric tensors take the following unified forms

symT(2n) = α u D(2) u D(4) u · · · u D(n) = sym
n∑
r=0

1⊗(n−r) ⊗ D(2r),

symT(2n+1) = vu D(3) u D(5) u · · · uD(n) = sym
n∑
r=0

1⊗(n−r) ⊗ D(2r+1).

(46)

In (46),1⊗s denotes thesth tensor power,e.g.1⊗2 = 1⊗1 and1⊗3 = 1⊗1⊗1. The number of
independent deviatoric tensors in (46) is calculated according to Proposition 8 and Theorem 3,
and the forms ofD(s)-induced completely symmetric irreducible tensors are obtained from the
observation thatε is skew-symmetric, so that can not be effective.

5. Concluding remarks

In this paper tensors in tensor subspaces have received the name physical tensors. We de-
veloped some simple and practical techniques to obtain irreducible decompositions of physical
tensors of high orders, particularly to provide a fast procedure for giving the number of inde-
pendent deviatoric tensors contained in the irreducible decomposition of physical tensors. As
for applications, a number of detailed irreducible decompositions of physical tensors of high
orders are first constructed. These results should be of increasing interest and importance,
since more and more research fields (such as the strain-gradient theory, second-order elasticity
theory, damage mechanics with a fourth-order damage tensor, etc.) involve high-order physical
tensors. It is emphasized that irreducible decompositions of high-order tensors enable easier
and more intuitionistic physical understanding and characteristics of these tensors, and may
even become a necessity in formulating a physical or constitutive equation which involves
these high-order tensors.

Appendix A. Spherical harmonics

In the group representation theory it is known that deviatoric tensors can be one-to-one connected with spherical
harmonics. For making this paper self-contained, we derive the relationships among deviatoric tensors, spherical
harmonics and Fourier expansions inN-dimensional basic Euclidean spaceE . In the following the summation
convention for respected indices is not adopted.

Denote byPm the linear space of all homogeneous polynomials in the coordinate variablesxi of degreem,
for example,x6

1 x
2
2 x

9
3 ∈ P17. Denote by1 =∑N

i=1 ∂
2/∂xi∂xi the Laplace operator in the basicN-dimensional

Euclidean spaceE . The linear space{p(x) ∈ Pm:1p(x) = 0} is called the space of harmonic polynomials
of degreem, and the restricting forms of harmonic polynomials of degreem to the unit sphere inE are called
spherical harmonicsof degreem. We denote byHm the linear space of all spherical harmonics of degreem. It is
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well known (cf. [16, pp. 302–309], [17, pp. 88–89]) that the linear spaceHm and themth order irreducible tensor
spaceD(m) have the same dimensions

Dm = dimHm = dimD(m).

In general, the spacesHm andHn for different nonnegative integersm andn are mutually orthogonal in the
following inner product sense

(f, g) =
∮
f (n)g(n)dn = 0, for any f ∈ Hm, g ∈ Hn, (A1)

wheren denotes the generic unit vector and the integration is over the unit sphere.
It is well known that any square-integrable scalar functionF(n) on the unit sphere can be expanded into an

absolutely convergent Fourier series in the form

F(n) = F0+
∞∑
m=1

Fm(n), Fm(n) ∈ Hm.

Denoting by� the area of the unit sphere inE , we have

F0 = �−1
∮
F(n) dn.

To expressFm(n), let us introduce an orthogonal basis, say{Ym,J (n): J = 1, . . . , Dm}, of Hm. For instance,
the sets

{cosmφ, sinmφ},

{Pm,0(cosθ), Pm,1(cosθ) cosφ, Pm,1(cosθ) sin φ, . . . ,

Pm,m(cosθ) cosmφ,Pm,m(cosθ) sinmφ},

constitute orthogonal bases ofHm in two and three dimensions, respectively, where

n =(cosφ, sin φ) or n = (cosθ cosφ, cosθ sin φ, sin φ)

denotes the polar or spherical polar coordinate representation of the two- or three-dimensional unit vectorn, and
Pm,r (y) are the Legendre and associated Legendre functions that can be expressed in terms of the Rodrigues forms
as follows

Pm,r (y) = (1− y2)r/2

2mm!
dm+r

dym+r (y
2 − 1)m.

By definition, we have

Fm(n) =
Dm∑
J=1

am,J Ym,J (n), am,J = (Ym,J , Ym,J )−1
∮
F(n)Ym,J (n)dn.

A one-to-one correspondence relation between the generic spherical harmonicsFm(n) of degreem and the
genericmth order deviatoric tensorD(m) can be established in the following form

Fm(n) = D(m) ◦ n⊗m =
∑

i1i2...im

Di1i2...imni1ni2 . . . nim,
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where

D(m) =
Dm∑
J=1

am,J gm,J , Ym,J (n) = gm,J ◦ n⊗m, gm,J = �−1
m

∮
Ym,J (n)n

⊗m dn,

with

�m = m!�
N(N + 2) · · · (N + 2m− 2)

, N = dimE .
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